When MHD-Based Microfluidics is Equivalent to Pressure-Driven Flow

نویسندگان

  • Mian Qin
  • Haim H. Bau
  • Haim H Bau
چکیده

Magnetohydrodynamics (MHD) provides a convenient, programmable means for propelling liquids and controlling fluid flow in microfluidic devices without a need for mechanical pumps and valves. When the magnetic field is uniform and the electric field in the electrolyte solution is confined to a plane that is perpendicular to the direction of the magnetic field, the Lorentz body force is irrotational and one can define a “Lorentz” potential. Since the MHD-induced flow field under these circumstances is identical to that of pressure-driven flow, one can utilize the large available body of knowledge about pressure-driven flows to predict MHD flows and infer MHD flow patterns. In this note, we prove the equivalence between MHD flows and pressure-driven flows under certain conditions other than flow in straight conduits with rectangular crosssections. We determine the velocity profile and the efficiency of MHD pumps, accounting for current transport in the electrolyte solutions. Then, we demonstrate how data available for pressure driven flow can be utilized to study various MHD flows, in particular, in a conduit patterned with pillars such as may be useful for liquid chromatography and chemical reactors. Additionally, we examine the effect of interior obstacles on the electric current flow in the conduit and show the existence of a particular pillar geometry that maximizes the current.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MHD Flow and Heat Transfer of SiC-TiO2/DO Hybrid Nanofluid due to a Permeable Spinning Disk by a Novel Algorithm

This study intends to semi-analytically investigate the steady 3D boundary layer flow of a SiC-TiO2/DO hybrid nanofluid over a porous spinning disk subject to a constant vertical magnetic field. Here, the novel attitude to single-phase hybrid nanofluid model corresponds to considering nanoparticles and base fluid masses to compute solid equivalent volume fraction, solid equivalent de...

متن کامل

Moving Lids Direction Effects on MHD Mixed Convection in a Two-Sided Lid-Driven Enclosure Using Nanofluid

Magnetohydrodynamic (MHD) mixed convection flow of Cu–water nanofluid inside a two-sided lid-driven square enclosure with adiabatic horizontal walls and differentially heated sidewalls has been investigated numerically. The effects of moving lids direction, variations of Richardson number, Hartmann number, and volume fraction of nanoparticles on flow and temperature fields have been studied. Th...

متن کامل

Heat transfer in MHD square duct flow of nanofluid with discrete heat sources

The effect of thermal and solutal buoyancy induced by a discrete source of heat and mass transfer in a square duct under the influence of magnetic field, especially at the turbulent regime for the first time is reported. Al2O3/water nanofluid is used with constant heat flux from three discrete heat sources. In the present study, the effects of Reynolds number (100 to 3000), particle volume frac...

متن کامل

Design of pressure-driven microfluidic networks using electric circuit analogy.

This article reviews the application of electric circuit methods for the analysis of pressure-driven microfluidic networks with an emphasis on concentration- and flow-dependent systems. The application of circuit methods to microfluidics is based on the analogous behaviour of hydraulic and electric circuits with correlations of pressure to voltage, volumetric flow rate to current, and hydraulic...

متن کامل

Mathematical Analysis of MHD Flow of Blood in Very Narrow Capillaries (RESEARCH NOTE)

A mathematical model for blood flow in narrow capillaries under the effect of transverse magnetic field has been investigated. It is assumed that there is a lubricating layer between red blood cells and tube wall. The transient flow of the fit red blood cell surrounded by plasma annulus in the narrow capillary is considered. The analysis of fluid flow between red cell and tube wall, when the ce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016